‘Domino’ systems biology and the ‘A’ of ATP

Malkhey Verma a, Maksim Zakharstev b, Matthias Reuss b, Hans V. Westerhoff a,c,d,*

a Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
b Institute for Biochemical Engineering (IBVT), University of Stuttgart, 70569 Stuttgart, Germany
c Netherlands Institute for Systems Biology, Molecular Cell Physiology, VU University Amsterdam, Netherlands
d Synthetic and Systems Biology, The University of Amsterdam, Netherlands

A R T I C L E I N F O
Article history:
Received 6 July 2012
Received in revised form 17 September 2012
Accepted 23 September 2012
Available online 29 September 2012

Keywords:
Domino systems biology
Domino process
Glycolysis
Adenine nucleotide
IMP salvage
Saccharomyces cerevisiae

A B S T R A C T
We develop a strategic ‘domino’ approach that starts with one key feature of cell function and the main process providing for it, and then adds additional processes and components only as necessary to explain provoked experimental observations. The approach is here applied to the energy metabolism of yeast in a glucose limited chemostat, subjected to a sudden increase in glucose. The puzzles addressed include (i) the lack of increase in Adenosine triphosphate (ATP) upon glucose addition, (ii) the lack of increase in Adenosine diphosphate (ADP) when ATP is hydrolyzed, and (iii) the rapid disappearance of the ‘A’ (adenine) moiety of ATP. Neither the incorporation of nucleotides into new biomass, nor steady de novo synthesis of Adenosine monophosphate (AMP) explains. Cycling of the ‘A’ moiety accelerates when the cell’s energy state is endangered, another essential domino among the seven required for understanding of the experimental observations. This new domino analysis shows how strategic experimental design and observations in tandem with theory and modeling may identify and resolve important paradoxes. It also highlights the hitherto unexpected role of the ‘A’ component of ATP.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Systems biology has the ambition to reveal how and where interactions are essential for biological function. So-called top–down systems biology assesses the dynamic behavior of components in the functioning biological system experimentally. Correlations that persist under a variety of conditions then lead to empirical relationships between the components. By projection onto the genome this may suggest hitherto unknown interactions. A second approach, called bottom–up systems biology starts from the molecular components and their experimentally established interactive properties and then examines by computer modeling to which functional properties these interactions may lead. By then extending this approach to more and more components, the approach expects ultimately to achieve an understanding of the entire system. A third approach has been called ‘middle-out’ systems biology [1,2]. It starts at some point in between molecular components and entire system, and then examines how at that level interactions produce functional dynamics.

The approaches have a problem in common. This is the immense complexity of even the smallest living systems. Taking the latter as quasi-autonomous systems that are able to sustain themselves in principle indefinitely, in the presence of continuous damage being inflicted upon them by their environment, this complexity has been shown to exceed 300 interacting genes and their products and many more for yeast [3–7]. Removal of any of these makes the organism nonviable. This contention is supported by an estimate of more than 150 processes needed together for life to be sustainable [8]. Consequently, the bottom–up approach would need to take hundreds of molecular processes into account at the same time, and the top–down approach would need to measure the effect of hundreds of independent perturbations for the system to become identifiable in terms of its components. The middle-out strategy would have to be repeated at a multitude of ‘intermediate’ levels, or combined with bottom–up or top–down systems biology, to enable understanding the level that is being studied fully: some of the regulatory loops controlling the phenomena studied will run through lower or higher levels of organization.

In practice, the three approaches are exercised on systems of reduced complexity, or with a reduced number of perturbations. Most bottom–up systems biology is still restricted to specific parts of the metabolic map of the cell (e.g. glycolysis) or to a specific regulatory structure (e.g. the MAP kinase signaling pathway). In vivo, however, the different cellular sub-systems integrate to form the complete living organism such as a yeast cell. Regulation of a reaction rate in a metabolic pathway by a metabolite in that same pathway may involve the activation of a transcription factor for the gene encoding the enzyme that catalyzes the reaction rate, thereby involving pathways at different levels in the cellular hierarchy [9]. Likewise, in a...
gene regulatory network, the regulation of a gene may govern the transcription of part of a different chromosome by encoding a protein that is a transcription factor of the latter. Understanding of even a single, apparently local function of the genome, may involve multiple other parts of that genome: Systems biology requires integrated kinematic models of the whole organism.

For top-down systems biology the first few principal components emerge in a deconvolution of the dynamics, where amplitude of change is supposed to square with importance for function. However, also here the problem of connectivity applies; the total number of principal components might well equal the number of components, if it were not for the experimental noise to make this unobservable: Intracellular networks appear scale-free and are highly connective. Strictly speaking therefore, neither bottom-up, nor top-down, nor middle-out systems biology can succeed in elucidating cell function until they are complete in the sense of taking the dynamic functioning of all genes and gene products of an organism into account.

Intuitively, this seems too pessimistic. For sure, certain genes must be less important than others. After all, the control exercised by most genes on cellular fluxes should be small [14,15], and there is substantial redundancy in genetic networks, as evidenced by the many homozygous deletions that are ‘silent’ in terms of growth rate (although perhaps not in terms of metabolome [16]). There should be a way therefore to focus on the more important functions and on the processes that are most important for these. Subsequently one may then focus on the second most important function, etcetera.

Here we describe a new strategy for systems biology that attempts to do this systematically. We call the approach ‘domino systems biology’. Rather than with all molecular components of the systems, this strategy starts with one of the essential functions of life and identifies the major process and the major cellular monitor of that function. These are the two parts of the first ‘domino’. By integrating progressive experimentation with modeling, the strategy examines if process and monitor suffice for explaining the observed functioning. When it begins to fail to do so, additional dominoes (processes or monitors) are examined in terms of their ability to restore correspondence between model and experimentation. The first one that is able to do so is then assimilated into the model and the procedure is iterated.

Of biological functions that contribute to the fitness of species, we shall target growth and what is essential for it. In view of the richness of the (bio)chemistry of most species, our domino systems biology may begin with the commodities that cannot be created by chemical processes, following the sequence (Gibbs free) energy, total carbon, total redox (electrons available for reduction–oxidation reactions), total nitrogen, total phosphorous and total sulfur, and then the cofactors and vitamins. We here start with the first of these, and identify the main commodity(s) representing it and the main process synthesizing that commodity. We then follow the domino strategy described above. The strategy will lead us from ATP and glycolysis to pyruvate, AMP and the nucleotide salvage pathways, producing understanding of the importance of various cellular processes for cellular energetics and growth.

2. Materials and methods

2.1. Model development: domino systems biology

Domino systems biology is a modular approach which begins with a central module and adds dominating biological phenomena as a sequence of modules. The domino method has the additional property that each module is characterized by one or more inputs and one or more outputs. The latter either corresponds to an output of the system as a whole or is identical to the input of a next module. Consequently, modules constitute chains that run from a system input to a system output. The various modules in the model are as follows:

2.1.1. Glycolysis domino

In our first step in the domino approach, glycolysis was taken as a single reaction starting from one glucose molecule and leading to two ATP molecules (Supplementary material Fig. S1):

Glucose + 2ADP→2ATP.

The rate expression is shown by Eq. (2).

\[v^{Gly} = \frac{Glc \cdot ADP}{K_{mGlyGlc} \cdot K_{mGlyADP} \left(1 + \frac{Glc \cdot ADP}{K_{mGlyGlc} \cdot K_{mGlyADP} + \frac{Glc \cdot ADP}{K_{mGlyADP} \cdot K_{mGlyGlc}}} \right)} \] (2)

The parameter \(K_{mGlyGlc} \) and \(K_{mGlyADP} \) values used were 0.08 and 0.53 mM respectively, adopted from Teusink model [17]. \(v^{Gly}_{\text{max}} \) was calculated to be equal to 226.33 mM/min by fitting the glycolysis flux equal to Teusink model in glucose rich condition (50 mM extra-cellular glucose) by keeping Glc and ADP concentrations equal to steady state concentrations in Teusink model 0.098 and 1.29 mM, respectively. This corresponded to our first glycolysis domino with input glucose and output ATP (the left-hand domino in Supplementary Fig. S1).

2.1.1.1. Upper glycolysis domino. As an alternative to the above glycolysis domino, glycolysis was modeled as the integration of three reactions. One started from glucose and two ATP and led to fructose-1,6-bisphosphate (FbP) and two ADP molecules, and was called the ‘upper glycolysis domino’:

Glucose + 2ATP→FbP + 2ADP

The parameter values \(K_{mR1Glc} \) and \(K_{mR1ATP} \) were taken as 0.08 and 0.15 mM, respectively and the value of \(v^{R1}_{\text{max}} \) was calculated as 169.5 mM/min by adopting the steady state concentrations of Glc and ATP (0.098 and 2.5 mM, respectively) from Teusink et al. [17] for the glucose rich condition (50 mM external steady state glucose) to fitting the glycolytic flux equal to that of the Teusink et al. model. Another rate equation for \(v^{R1} \) (HK-PFK) has been proposed by Heinrich and Schuster [18]. Comparison of the simulation results for both equations for dominoes of Figs. 1A, 3A and 4A in this manuscript is shown in Figs. S8, S9 and S10, respectively in the supplementary material.

2.1.1.2. Lower glycolysis domino. The second domino consumed FbP and four ADP molecules and produced two pyruvate and four ATPs. For reasons of conciseness this domino was integrated with a third process converting pyruvate to ethanol and carbon dioxide (Fig. 1A). The reactions and rate expressions are shown below:

FbP + 4ADP→2Pyruvate + 4ATP

\[v^{R2} = \frac{FbP \cdot ADP}{K_{mFbPFbP} \cdot K_{mFbPADP} \left(1 + \frac{FbP \cdot ADP}{K_{mFbPFbP} \cdot K_{mFbPADP} + \frac{FbP \cdot ADP}{K_{mFbPADP} \cdot K_{mFbPFbP}}} \right)} \] (6)

Pyruvate→Ethanol + CO₂

(7)
2.1.2. Maintenance domino

This process consumes ATP energy to keep cellular machinery in the working state. Consumption of ATP for maintenance needs \(\sim 1 \text{ mmol/g Dry-cell/h} \) of ATP in carbon starvation condition \([19]\). Therefore this domino depends only on the ATP and consuming ATP as its turnover to ADP and P:

\[
\text{ATP} \rightarrow \text{ADP} + P_i \quad (9)
\]

\[
\nu_{\text{Maintenance}} = \frac{K_{\text{maintenance}}}{[\text{ATP}]} \quad (10)
\]

This led to an 8.3 mM/min maintenance flux, which was calculated by multiplying the 1 mmol/g Dry-cell/h ATP demand of \textit{Saccharomyces cerevisiae} under carbon starving conditions \([19]\) by 60 min/h and dividing it by 445 gDCW/Lycosyl volume (Maksim Zakhar'tsev's unpublished data). Using an ATP concentration of 2.5 mM (the ATP concentration for the glucose rich condition in the Teusink et al. model), the parameter value \(k_{\text{maintenance}} \) was calculated as 3.33 min\(^{-1}\) to meet the \(-1\) mmol/gDCW/h ATP demand of \textit{S. cerevisiae}.

2.1.3. Growth domino (version 1)

The version-1 of growth is a minimal model of one reaction which consumes ATP and the glycolytic metabolite pyruvate as precursors of the biomass building blocks. The need of ATP for incorporation of one gram-atom carbon in biomass was calculated as 2-2.5 mol of ATPs using experimental data of biomass yield per mole of ATP and the \(\text{CH}_1.64\text{O}_0.52\text{N}_0.16\text{P}_0.01\text{S}_0.005 \) formula for biomass \([20,21]\). Later the stoichiometry of pyruvate and ATP for biomass synthesis was calculated as 1:6 for three C-atoms per mole of pyruvate. This reaction is modeled using irreversible Michaelis–Menten kinetics dependent on pyruvate and ATP.

Pyruvate + 6ATP \(\rightarrow \) Biomass + 6ADP

\[
V_{\text{Growth}}^{\text{max}} = \nu_{\text{Growth}}^{\text{max}} \left(\frac{\text{Pyruvate}}{K_{\text{GrowthPyruvate}} + \text{Pyruvate}} \cdot \frac{\text{ATP}}{K_{\text{GrowthATP}} + \text{ATP}} \right) \quad (12)
\]

This equation is used for growth dominoes in Figs. 3A and 4A. The parameter values \(K_{\text{GrowthPyruvate}} \) and \(K_{\text{GrowthATP}} \) were taken equal to 2.0 and 4.0 mM respectively, assuming that most of the reactions in a metabolic pathway operate at Michaelis–Menten constants close to intracellular concentrations at steady state. \(V_{\text{Growth}}^{\text{max}} \) was determined equal to 59.3 mM/min by fitting the data of ~10–15% of carbon (glucose) flux accumulates as biomass for yeast cells growing in anaerobic conditions \([22,23]\).

2.1.4. Growth domino (version 2)

In a subsequent domino approach to growth, biomass synthesis was assumed to be allosterically regulated by the fructose-1,6-bisphosphate (F6P) concentration, which would act as a second monitor (in addition to pyruvate) of the carbon state of the cell:

\[
V_{\text{Growth}} = \nu_{\text{Growth}}^{\text{max}} \left(\frac{\text{Pyruvate}}{K_{\text{GrowthPyruvate}} + \text{Pyruvate}} \right) \times \frac{\text{ATP}}{K_{\text{GrowthATP}} + \text{ATP}} \times \frac{\text{F6P}}{K_{\text{GrowthF6P}} + \text{F6P}} \quad (13)
\]
2.1.5. Adenylate kinase domino

Adenylate kinase provides a link between the substrate energy molecule ADP and the product energy molecule ATP of glycolysis through AMP. It transphosphorylates two ADP molecules to an ATP and AMP molecule:

\[2ADP \leftrightarrow ATP + AMP \]

(14)

\[v_{\text{Adenylate kinase}} = k_{\text{Adenylate kinase}} \left(\frac{ADP^2 - \frac{ATP \cdot AMP}{K_{\text{eq}}}}{K_{\text{eq}}^2} \right). \]

(15)

Parameter values \(k_{\text{Adenylate kinase}} \) and \(K_{\text{eq}} \) were taken equal to 1330.33 mM/min and 0.45 as reported in [17].

2.1.6. AXP consumption for biomass domino

DNA and RNA together constitute ~20% (dry w/w) of biomass of \(S. \) \textit{cerevisiae} growing in anaerobic condition [22]. Accordingly, the AXP consumption for biomass domino was modeled to incorporate ATP for nucleotides in DNA and RNA as ~20% (w/w) of biomass. So ATP consumption for biomass was modeled to incorporate ATP growing in anaerobic condition [22]. Accordingly, the AXP consumed for biomass synthesis as described in 'AXP consumption for biomass domino':

\[ATP \rightarrow \text{Biomass} \]

(16)

\[F_{\text{ATP biomass}} = 0.14 \cdot V_{\text{Growth}} \]

(17)

2.1.7. Nucleotide biosynthesis domino

Because cell growth will gradually deplete the nucleotide pool, a domino that replenishes the pool was introduced. The glycolytic precursor for AMP synthesis via the pentose phosphate pathway is G6P and turn-over of five ATP molecules in various steps in the salvage pathway [24]. The flux for this reaction was taken corresponding to ~20% of the carbon flux for biomass synthesis as described in 'AXP consumption for biomass domino':

\[G6P + 5\text{ATP} \rightarrow \text{AMP} + 5\text{ADP} \]

(18)

\[v_{\text{Nucleotide synthesis}} = 0.14 \cdot V_{\text{Growth}} \]

(19)

2.1.8. Adenine nucleotide salvage domino

In the presence of \(ATP, AMP \) was preferentially degraded via IMP and appeared in the form of inosine and hypoxanthine [25]. This domino assumes that at lower concentrations of \(ATP, AMP \) deaminates to IMP and further dephosphorylates to inosine. Also, \(AMP \) dephosphorylates to adenosine:

\[AMP \rightarrow IMP \]

(20)

\[v_{\text{AMP deaminase}} = k_{\text{AMP deaminase}} \left(\frac{AMP - IMP}{K_{\text{eq AMP deaminase}}} \right) \]

(21)

\[IMP \leftrightarrow \text{Inosine} \]

(22)

\[v_{\text{AMP phosphatase}} = k_{\text{AMP phosphatase}} \left(\frac{AMP - IMP}{K_{\text{eq AMP phosphatase}}} \right) \]

(23)

\[AMP \leftrightarrow \text{adenosine} \]

(24)

\[v_{\text{AMP nucleotidase}} = k_{\text{AMP nucleotidase}} \left(\frac{AMP - IMP}{K_{\text{eq AMP nucleotidase}}} \right) \]

(25)

These reactions are catalyzed by different enzymes in the forward and reverse directions [25] but metabolite data produced in this study indicate that they quickly reach to equilibrium. So, our model assumed that the above reactions are very fast like the adenylate kinase reaction in Teusink model [17]. The \(k \) values for these reactions were taken equal to \(k_{\text{Adenylate kinase}} \) for adenylate kinase reaction of value 1330.33 mM/min. All three \(K_{\text{eq}} \) were estimated equal to ~0.7 by taking the ratios corresponding to metabolites in the glucose limited chemostat cultures. Under the transient condition after the glucose pulse, the above reactions were not at equilibrium. The various 'dominoes' in the model were developed using MATLAB (The Math Works Inc., U.S.A.) and COPASI software and parameter values used in the model are given in Supplementary material Table S1.

2.2. Experimental procedures

2.2.1. Strains, medium and cultivation conditions

\(S. \) \textit{cerevisiae} CEN.PK 113-7D were grown anaerobically in glucose limited chemostat on anaerobic minimal synthetic CEN.PK medium prepared according to [26]. The chemostat (steel KLF 2.5 L bioreactor; Bioengineering, Switzerland) operating conditions were: \(D = 0.1 \text{ h}^{-1} \), feeding \(C_{\text{glc}} = 278 \text{ mM} \), \(T = 30 \text{ °C} \), \(\text{pH} = 5.0 \) (adjusted by KOH), \(\text{pO}_2 = 0 \% \) (constant nitrogen sparging through the culture with 1.5 L min\(^{-1}\)), \(P_{\text{headspace}} = 0.3 \text{ bar} \), stirring at 400 rpm. Under these operating conditions the yeast culture reaches the following steady state properties: cell density \(C_x = 3.5 \text{ gDW/L} \) and glucose concentration \(C_{\text{glc}} = 0.67 \text{ mM} \).

2.2.2. Glucose perturbation and sampling

After the yeast culture had reached the steady state it was perturbed with a glucose increase: At \(t = 0 \text{ min} \) the extra glucose (\(C_{\text{glc}} = 5.56 \text{ mM} \)) was injected directly into the chemostat. Samples were withdrawn from the chemostat both during steady state phase and during 30 min after glucose perturbation with different time intervals. Rapid sampling was performed by a computer aided sampling robot that withdraws the required amount of the broth (1.5 mL) at designed time points with 1 mL/s into 9 mL of pure −50 °C methanol.

2.2.3. Sample preparation and analytical methods

Upon sample collection they were immediately centrifuged at 20,000 \(\times g \) for 3 min at −20 °C, and the cell pellets were separated from the supernatants. Prior to the extraction, the cold pellet was heat shocked at +90 °C for 15 s, and then only then immediately extracted with 3 mL of hot pure ethanol +90 °C during 5 min with vortexing once per minute. Then the extracts were immediately cooled down on ice/water bath at 0 °C and further evaporated in rotational vacuum concentrator (Christ® RVC 2–33 IR. 4 mbar, −1 h under 4 °C) to dryness. The remains were re-dissolved in 1000 \(\mu \text{L} \) of 10 mM phosphate buffer pH 7.0, vortexed well and then 500 \(\mu \text{L} \) of chloroform was added, vortexed well and centrifuged 5 min at
20 × 10^3 g at 4 °C. Then 200 μL of aquatic phase was collected and used for HPLC analysis. Agilent 1200 Series HPLC system was used with Supelcosil™ LC-18-T column (3 μm; 150 × 4.6 mm; Supelco, USA) guarded with Supelco guard™ (3 μm; 20 × 4.0 mm; Supelco, USA). Buffer A: 100 mM phosphate buffer pH 6.0; 4 mM tetrabutylammonium disulfate (TBAS). Buffer B: 30% methanol in 100 mM phosphate buffer pH 7.2 and 4 mM TBAS. The separation was performed in linear gradient from 0 to 100% of B with 1.5%/min^-1 and flow rate 1 mL min^-1 at 25 °C (column thermostat) and detection at 260 and 340 nm. The separation method was calibrated using ATP, ADP and AMP (Sigma) as standards and further the AXP content was expressed in μmol per gram of dry weight of biomass [μmol/gDW].

3. Results

3.1. The first domino: connecting glycolysis to ATP

The composition of the biomass in terms of elements (C, N, P, and S), electrons (H/O) and Gibbs free energy is virtually constant. Consequently under any given growth condition usually all but one, are present in excess. Here we shall develop the case where the Gibbs free energy limits growth. The most important commodities for Gibbs free energy in Biology are the hydrolytic free energy of ATP and the trans-membrane electrochemical potential for protons across the inner mitochondrial (eukaryotes) or plasma (prokaryotes and Archaea) membrane. For simplicity we here choose an experimental system where the former is definitely the more important of the two. This defines the value of one side of the first domino.

The domino itself should then be a process that synthesizes ATP from a different commodity. Because we here wish to illustrate the domino approach we choose a relatively simple but fully relevant experimental system, i.e. ATP synthesis powered by the breakdown of glucose to alcohol and carbon dioxide in baker’s yeast: The first domino (Supplementary material Fig. S1) is glycolysis that starts from glucose and leads to ATP. The chemical reaction corresponding to this first domino is:

\[
glucose + 2ADP + 2Pi → 2ethanol + 2CO_2 + 2ATP.
\]

This reaction has a highly negative standard Gibbs energy, so that by itself it will phosphorylate virtually all ADP to ATP under ambient conditions if it is allowed to proceed to equilibrium. The second column in Table 1 shows the concentrations of ATP and ADP obtained in a glucose limited chemostat culture of baker’s yeast. The ATP concentration exceeds the concentration of ADP but the latter is not close to zero. The first domino is not enough to explain this experimental result of a limit to the phosphorylation of ADP. This conclusion is independent of any parameter value other than Gibbs free energies of ATP hydrolysis and glucose fermentation, which are well known.

3.2. The second domino: maintenance

Living organisms are not at thermodynamic equilibrium. They consume ATP in biosynthetic reactions as well as for physiological maintenance [27]. The latter process corresponds to the maintenance domino that leads from ATP to ADP (Supplementary Fig. S1, right-hand side). The fourth column in Table 1 shows the result of calculations of the steady state for a realistic model of glycolysis [17], plus an estimated module summarizing the maintenance processes. With this maintenance module the ADP modeled for excess glucose exceeded zero and can be fitted to the experimental value.

3.3. The ATP paradox and the dynamics of glycolysis

Because the experiment was carried out in a glucose limited chemostat at a dilution rate (and hence at a specific growth rate) of 0.1 h^-1, far below the maximum growth rate, the glucose concentration could not have been saturating growth. Hence, the model with glycolysis and maintenance simulated an increase in the ATP level upon addition of excess glucose (Table 1, columns 4 and 5). This prediction was however not in keeping with our experimental results: here ATP was constant or perhaps subject to a slight decrease (see Table 1, columns 2 and 3). The prediction is not in line either with the earlier observation by Theobald et al. [28] that upon glucose addition to a glucose limited chemostat, ATP decreased significantly. The failure of ATP to increase upon addition of glucose is what we call the glucose-ATP paradox.

Like most catabolic pathways, glycolysis is activated by the coupling of early reactions to the dephosphorylation of ATP, in thereby thermodynamically downhill reactions. Further down the pathway four ADP molecules are phosphorylated to ATP leading to a net yield of two ATPs. Perhaps therefore, the decrease in ATP observed by Theobald et al. [29], was due to this first phase dominating the dynamics. Under our precise experimental conditions the two effects of an early decrease and a subsequent increase might be confounding the earlier prediction.

This complication suggests that we should split up the glycolysis domino into two consecutive ones, i.e. one leading to the synthesis of fructose bisphosphate at the expense of two ATPs and one leading from fructose bisphosphate to alcohol, carbon dioxide and 4ATPs. Fig. 1A shows the resulting domino scheme and Fig. 1B the corresponding calculations of ATP dynamics, where true fluxes and intracellular concentrations are taken into account. Indeed, the calculations show that initially the ATP level slightly decreases after glucose addition (Fig. 1B inset), which is followed by a dominant increase that leads to an ATP level that is higher than the initial level. A sensitivity analysis indicated that qualitatively this observation did not depend on any parameter value in the model (see supplementary material). Clearly, the issue cannot be resolved in an experiment taking a single time measurement (as in Table 1), but requires a time series experiment. Fig. 1C shows the results of such an experiment at high time resolution. The experiment reveals that indeed there is a sharp drop in ATP levels upon addition of the glucose, which is followed by an almost equally acute increase. Splitting the glycolysis module into two components not only explains the transient drop in ATP, but also demonstrates that for the comparison of the steady states before and after addition of extra glucose, the existing domino model (Fig. 1A) is insufficient.

3.4. The ATP paradox and growth rate acceleration

Under the conditions of the experiment of Table 1 and Fig. 1C, the cells are growing under glucose limiting conditions (in a chemostat). Consequently, one should expect that the addition of excess glucose should increase the rate at which the cells grow. We therefore added the domino of growth itself, as energized by ATP. Fig. 2 shows the corresponding domino scheme and calculations of ATP dynamics. Also this new model predicts that upon addition of excess glucose the steady-state ATP level should increase (Fig. 2B) after increasing the extracellular glucose concentration. This observation

Table 1

In vivo and in silico adenine nucleotide concentrations in S. cerevisiae growing under glucose limited and excess conditions, as determined experimentally and calculated by the model.

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>Chemostat experiment</th>
<th>Teusink model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glucose limited (5 min before)</td>
<td>Glucose excess (10 min after)</td>
</tr>
<tr>
<td>ATP (mM)</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>ADP (mM)</td>
<td>1.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>
did not depend on values on the parameters in the model (see supplementary material). This is understandable as in this model growth rate can only increase if the ATP level increases. The two dominoes for maintenance and growth appear to be functionally identical in Fig. 2A. Nevertheless these model predictions are in flagrant contrast to experimental observations (Fig. 1C).

Growth does not only consume ATP but also carbon, and the domino scheme of Fig. 2A neglects the latter. If both energy and carbon would be limiting growth at the same time, then Fig. 3A should be more appropriate, where we have now added a second intermediary between processes, i.e. a building block for the carbon content of biomass. Candidates for this are substances like pyruvate and glucose-6-phosphate. Fig. 3B shows a calculation for when pyruvate is used as the second intermediate between glycolysis and growth. The calculation in Fig. 3B shows that now the ATP goes down slightly upon the addition of glucose, which is more in line with the experimental findings (Fig. 1C) and Theobald et al. [28].

In our calculations the growth rate was taken to depend rather strongly on the concentration of pyruvate. Our theoretical analyses suggested that whether the ultimate level of ATP would be lower or higher than the initial level for the transition from glucose limited to rich conditions (data not shown) should depend on the elasticities of growth for ATP relative to the elasticity of growth for the internal carbon source (intracellular glucose or glycolytic metabolite) stimulating growth [30]. With ‘elasticity’ we refer to the dependence of growth rate on the concentration of ATP or the carbon source. If growth depends more on ATP levels than on the internal carbon source, then upon stimulation of catabolism the increase in ATP would much stimulate growth and reduce the level of the carbon source, but if it depends more on the carbon source than on ATP, the carbon source would increase growth and pull down the ATP level. We conclude that the domino analysis now requires not only three processes but also two intermediates (ATP and carbon) to be considered.

3.5. The adenine nucleotide puzzle

In the standard views of cellular energetics, the terminal phosphate bond of ATP plays the central role; Gibbs energy extracted in catabolic processes is put into the phosphorylation of ADP to form ATP. The hydrolysis of this terminal phosphate anhydride bond is used to drive intracellular reactions that require Gibbs free energy. This is one of the ‘bow-tie’ schemes of cell function [27,31,32]. In this view the decreases in the concentration of ATP should be accompanied by equal increases in the concentration of ADP such that the sum concentration of ATP and ADP should remain unchanged. Fig. 3C shows that this was not quite the case experimentally: upon the addition of glucose there was a rapid decrease in the level of ATP, but the level of ADP did not increase by the same amount. The sum of the concentrations of ATP and ADP decreased rapidly and then increased again, slowly. Only after some 4 min the total level of ATP+ADP had returned to the original level.
One potential explanation for this phenomenon is the adenylate kinase reaction, in which 2 molecules of ADP transphosphorylate to produce one molecule of ATP and one molecule of AMP. The right-hand side of Fig. 4A has the corresponding domino, where it should be noted that it becomes hard to illustrate all implications by this two dimensional way of plotting. In particular the yield of ATP in this process is not well represented in the figure, but is taken into account in the calculations, the results of which are shown in Fig. 4B. Fig. 4B shows that indeed the sum of ATP and ADP should decrease upon the addition of glucose, because of a transient increase in the concentration of AMP. This then provided for a possible explanation of the transient decrease in the concentration of ATP+ADP.

In order to validate this explanation, we also measured the concentrations of AMP as a function of time (Fig. 4C). Although the concentration of AMP increased quickly and transiently upon addition of the excess glucose, the amplitude of the increase was much smaller than the extent of decrease in ATP+ADP. Clearly, although the addition of the new domino of adenylate kinase had some relevance, it did not suffice to explain the experimental observations. In Fig. 4B we also plot the sum of the concentrations of all adenine nucleotides. Up to this point the model has predicted this to be constant whereas in the experiments this sum concentration decreased strongly though transiently upon addition of glucose. This is what we call the ‘adenine nucleotide puzzle’.

In the literature, bottom-up models are available for the dynamic behavior of glycolysis inclusive of maintenance and the adenylate kinase reaction. These are maximally based on experimental data of the component enzymes. Here we replace the more primitive models for the various dominoes for glycolysis, maintenance and adenylate kinase we used above, with a domino corresponding to the detailed model of Teusink et al. [17] (see Materials and Methods). Fig. 5 shows that the conclusions achieved until now remain the same: all features can be explained except for the transient decrease in total adenine nucleotide concentrations that we observe experimentally upon the addition of excess glucose.

3.6. The adenine nucleotide puzzle and growth

The model arrived at up to this stage had a constant sum of concentrations of the adenine nucleotides. Growth implies the generation of new biomass. The new biomass will contain DNA, RNA, with dATP and ATP incorporated and indeed ATP, ADP and AMP as such, all of which would be made at the expense of the pool of ATP, ADP and AMP of the mother cell. We estimated the implications for a possible decrease of the sum adenine nucleotide concentrations in the dividing cells, assuming there were no re-synthesis. The results are shown in Fig. 6B. In this calculation we started from zero growth rate, enabling a steady state before the addition of the glucose which induced growth. The rate of decrease of the total adenine nucleotides pool that we calculated to be of the order of 1.3 mM/min is not in line with the kinetics observed experimentally in Fig. 4C. The AXP drop in the calculation has a half life time of ~1.5 min,

One potential explanation for this phenomenon is the adenylate kinase reaction, which equilibrates two molecules of ADP with AMP and ATP. (A): Domino systems biology scheme of glycolysis, maintenance and growth including adenylate kinase reaction, which equilibrates two molecules of ADP with AMP and ATP. (B): Model calculations of the adenine nucleotides corresponding with the schematic shown in panel A under glucose limited and excess conditions. (C): AMP and AXP dynamics observed in yeast growing in glucose limited continuous culture and supplemented with excess glucose conditions as shown in Fig. 1C. Vertical dotted line indicates separation of glucose limited and rich conditions. AXP refers the adenylate pool, where AXP = ATP + ADP + AMP.

![Fig. 4](image1.png)

Fig. 4. (A): Domino systems biology scheme of glycolysis, maintenance and growth including adenylate kinase reaction, which equilibrates two molecules of ADP with AMP and ATP. (B): Model calculations of the adenine nucleotides corresponding with the schematic shown in panel A under glucose limited and excess conditions. (C): AMP and AXP dynamics observed in yeast growing in glucose limited continuous culture and supplemented with excess glucose conditions as shown in Fig. 1C. Vertical dotted line indicates separation of glucose limited and rich conditions. AXP refers the adenylate pool, where AXP = ATP + ADP + AMP.

![Fig. 5](image2.png)

Fig. 5. (A): Schematic of complete glycolysis model [17] with equilibration by adenylate kinase, maintenance and growth dominoes. Maintenance consumes ATP for the maintenance of old biomass and growth consumes pyruvate and ATP for the synthesis of new biomass. (B): Model simulated profiles of adenine nucleotides for the integrated dominoes shown in panel A.
whereas the drop in the experiments has a half time that is more than 10 times faster. Also, this model predicts a persistent drop in AXP level at a half life of some 4 min, which is at odds with the experimental finding of a return of AXP levels to normal within 5 min of the glucose perturbation (Fig. 4B).

Of course, when adenine nucleotides are being consumed in biomass synthesis they should also be re-synthesized. Otherwise there will eventually be a shortage that will shut down all processes for lack of ATP. We examined a number of options for inserting this new domino into the domino model (Fig. 7A). We first introduced an AMP re-synthesis process at a constant rate just enough to compensate for the adenine nucleotide consumption at the low growth rate before the addition of extra glucose. This had the effect that after glucose addition, adenine nucleotides would still run out within 5 min. This problem persisted in models where AMP re-synthesis was inhibited by ATP, stimulated by AMP, which led to a catastrophic depletion of adenine nucleotides ultimately, and inhibited by AMP.

We then asked whether there was a regulatory design where the sum of the adenine nucleotides would not be affected by their increased consumption due to the addition of glucose. We observed that an effective way of doing this would be to make the rate of re-synthesis of AMP a direct function of the carbon status of the cell, in the same sense as growth rate itself. The corresponding calculations (Fig. 7B and C) show that this would work partly: Here the sum of the adenine nucleotides would not decrease in a sustained manner. However, this domino did not reproduce the transient but strong decrease in sum adenine nucleotides during the first 5 min after glucose addition.

3.7. The adenine nucleotide puzzle: IMP salvage domino

The rapid depletion of the total adenine nucleotide pool that sets in motion upon glucose addition could also be driven by a process decomposing AMP and regulated by the concentration of AMP. Therefore we next considered the domino corresponding to this. IMP is the deaminated product of AMP in the adenine degradation salvage pathway, and a metabolite in biosynthetic and salvage pathways of purine nucleotides [24]. Indeed (Fig. 8B) we observed a transient accumulation of IMP. We therefore added two dominoes, i.e. one for the decomposition of AMP into IMP, driven by the concentration of AMP,
Fig. 8. (A). The domino model including the nucleotide salvage pathway. The new module AXP salvage includes metabolism of AMP to its deaminated metabolites and resynthesis. (B) Experimentally observed dynamics of inosine monophosphate (IMP) in yeast growing on glucose limited continuous culture and supplemented with excess glucose conditions as shown in Fig. 1C. (C) Dynamic of individual adenine nucleotides for transition from glucose limited to excess conditions for the ultimate domino model that includes AXP salvage. The adenine nucleotide metabolism module is added which includes adenylate kinase type equilibration reactions of AMP to adenosine, AMP to IMP and IMP to inosine, as detailed under Materials and methods. Vertical dotted line indicates separation of glucose limited and excess conditions.

and one for the resynthesis of AXP from IMP. In Fig. 8A these are shown as a single domino called AXP salvage.

The calculated dynamics of adenine nucleotide energy charge are shown in Fig. 8C. This domino model can explain experimental observations shown in Figs. 3C and 4C for the dynamics of ATP, ADP, AMP and AXP all together, as well as the dynamics for IMP.

4. Discussion

The complexity of living cells hampers the understanding of biological functioning. Simplifying approaches are not without risk [33], but comprehensive approaches such as bottom–up and top–down systems biology require too much mechanistic information or too many experimental perturbations. Therefore we here developed a new systems biology approach and showed that it generated discoveries and understanding in energy and carbon metabolism in yeast. Truly new aspects of the domino approach are the fact that there are modules that each has a limited number of explicit inputs and a limited number of explicit outputs. Consequently, the various modules can be integrated readily into domino pathways. These pathways enable one to follow flows of interaction and information through the system, from one input to various outputs for instance. This domino approach should be very suited for integrating the understanding contributed by various research groups into a process that leads to understanding a whole biological system in terms of the functioning of and interactions between its functional components. The building of integral models in terms of component models is becoming important for metabolic engineering and truly individualized therapy of human disease [34].

The salvage pathway of adenine nucleotides was known biochemically, and so were the glycolytic pathway, the phenomenon of maintenance, and the fact that the synthesis of new biomass can go at the cost of the sum of ATP, ADP and AMP. However, these and other phenomena highlighted above have not yet been brought to bear on the single issue of growth and its dependence on the level of glucose, the molecule delivering the required free energy and carbon. This single perspective has enabled us to assess the quantitative importance of the incorporation of adenine nucleotides into new biomass, and the importance of the dependence of growth rate on both carbon and ATP levels. And then, where in the usual bow-tie models [27,31], the ATP–ADP ratio would be the prime and perhaps sole intermediate between catabolism and anabolism, we here find that the center of the bow-tie is more complex and also comprises the sum adenine nucleotide concentration, which is sustained by the adenine nucleotide salvage pathway.

Uwe Theobald was first to observe the ‘ATP paradox’, in S. cerevisiae growing in aerobic chemostat [29]. More thorough analysis of dynamic metabolite concentrations in the course of the glucose perturbation [28], allowed the testing of more extended yeast dynamic models [35], which however did not match the experimental observations of the AXP dynamics either. In order to improve data quality, sophisticated rapid sampling devices have been designed [for review [36], as well as better techniques for quenching [for example [37]] and sample preparation [for example [38,39]]. Various analytical quantification techniques [for example [38,40]] were developed to collect unbiased metabolite dynamics even on sub-second time scales [for example [41]]. All these more refined studies confirmed the ATP paradox in yeast both under aerobic and anaerobic conditions. There were several hypotheses to explain the dynamic decrease of ATP concentration in the course of the glucose perturbation in yeast:

1. use of ATP for glucose phosphorylation by glycolysis [17,28,35]
2. use of ATP for anabolic processes [30,35]
3. consumption of ATP for polymerization reactions, i.e. RNA synthesis (this paper).

Our domino approach was able to assess the relative importance of these mechanisms. Will this make a difference? For those who doubt that it will, it may be worth noting that current models of yeast metabolism assume that the adenylate pool constitutes a conserved moiety [17,35], which is not the case at time scales faster than 4 min (Fig. 1C). Not only the ATP concentration, but also the AXP changes over the transition from a glucose limited to a glucose excess scenario. In this regard the third hypothesis looked most attractive to explain the dynamics of AXP. However, contrary to earlier assumptions, we here showed that the observed drop in ATP could neither be entirely attributed to the hydrolysis of ATP for energy transfer process such as glucose phosphorylation [28], nor to the

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbadis.2012.09.014.

References

